姓名张阳*职称副教授所属系测控技术及仪器邮箱yzhang0615@vip.163.com电话2147483647个人简历张阳,男,1979年6月出生,安徽省蚌埠市人。1997年9月-2001年6月,就读于合肥工业大学仪器仪表b0b体育app下载测控技术与仪器系,获工学学士;2001年9月-2004年4月,就读于合肥工业大学仪器仪表b0b体育app下载精密仪器与机械专业,获得工学硕士学位。2004年4月至今,于b0b体育app下载测控技术与仪器系任教。研究领域嵌入式系统、工业检测及控制系统、智能测试仪表等开设课程1.单片机原理及应用2.单片机接口技术3.嵌入式系统及应用科研项目1.2.发表论文1.2.专著教材1.《基于HCS12的嵌入式系统设计》,电子工业出版社,2010年1月,第二作者2.《MC9S12XS单片机原理及嵌入式系统开发》,电子工业出版社,2011年9月,第一作者申请专利1.2.获奖成果1.2." /> b0b体育app下载-李畅

b0b体育app下载

合工大首页 English

硕士生导师

李畅

2017-05-04

姓名

李畅

职称

副教授

所属系

生物医学工程系

邮箱

changli@hfut.edu.cn

电话


个人简历

李畅,博士,副教授,2018年3月获得华中科技大学工学博士学位,2018年4月入职b0b体育app下载。目前主要从事图像处理、生物医学仪器信号测量与处理和信息融合等方面的研究工作。作为项目负责人承担了国家自然科学基金、安徽省自然科学基金、校学术新人提升A计划和B计划等多项科研项目。在IEEE SPM、IEEE TAC、IEEE JBHI、IEEE TIM、IEEE TNSRE和IEEE TII等权威期刊及会议发表相关论文100余篇,10篇论文入选高被引论文,论文总被引6000余次。入选斯坦福大学发布的全球前2%顶尖科学家榜单。担任IEEE TIP、IEEE TSP、IEEE TNNLS、IEEE TMM、IEEE TAC等多个国际知名期刊审稿人。

欢迎对相关研究方向感兴趣的同学报考我的研究生,可将个人简历发送至我的邮箱:changli@hfut.edu.cn。

研究领域

  图像处理、生物医学仪器信号测量与处理、机器学习、计算机视觉、信息融合

开设课程

  本科生课程:信号与系统、机器学习、机器学习中的优化方法

科研项目

  1. 国家自然科学基金青年科学基金项目,项目负责人

  2. 安徽省自然科学基金青年基金项目,项目负责人

  3. 合肥工业大学学术新人提升计划B项目,项目负责人

  4. 国家重点研发计划项目,项目骨干

  5. 国家自然科学基金原创探索项目,项目骨干


发表论文(*表示通讯作者)

ResearchGate:https://www.researchgate.net/profile/Chang-Li-50

  1. Online Seizure Prediction via Fine-Tuning and Test-Time Adaptation, IEEE Internet of Things Journal, 2024.

  2. Source-Free Domain Adaptation for Privacy-Preserving Seizure Prediction, IEEE Transactions on Industrial Informatics, Vol. 20, No. 2, pp. 2787-2798, 2024.

  3. CTCNet: A CNN Transformer capsule network for sleep stage classification, Measurement, Vol. 226, p. 114157, 2024.

  4. Centroid-Guided Domain Incremental Learning for EEG-Based Seizure Prediction”, IEEE Transactions on Instrumentation and Measurement, Vol. 73, p. 2500613, 2024.

  5. EEG-Based Emotion Recognition via Neural Architecture Search, IEEE Transactions on Affective Computing, Vol. 14, No. 2, pp. 957-968, 2023. (ESI高被引论文)

  6. EEG-Based Emotion Recognition via Channel-Wise Attention and Self Attention, IEEE Transactions on Affective Computing, Vol. 14, No. 1, pp. 382-393, 2023. (ESI高被引论文)

  7. EEG-based Emotion Recognition via Transformer Neural Architecture Search, IEEE Transactions on Industrial Informatics, Vol. 19, No. 4, pp. 6016-6025, 2023. (ESI高被引论文)

  8. Privacy-Preserving Domain Adaptation for Intracranial EEG Classification via Information Maximization and Gaussian Mixture Model, IEEE Sensors Journal, 2023.

  9. Online Test-Time Adaptation for Patient-Independent Seizure Prediction, IEEE Sensors Journal, Vol. 23, No. 19, pp. 23133-23144, 2023.

  10. Patient-Specific Seizure Prediction From Electroencephalogram Signal via Multichannel Feedback Capsule Network, IEEE Transactions on Cognitive and Developmental Systems, Vol. 15, No. 3, pp. 1360-1370, 2023.

  11. EEG-based seizure prediction via hybrid vision transformer and data uncertainty learning, Engineering Applications of Artificial Intelligence, Vol. 123, pp. 106401, 2023.

  12. Bi-CapsNet: A Binary Capsule Network for EEG-Based Emotion Recognition, IEEE Journal of Biomedical and Health Informatics, Vol. 27, No. 3, pp. 1319-1330, 2023.

  13. EEG-Based Seizure Prediction via Model Uncertainty Learning, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 31, pp. 180-191, 2023.

  14. Spatio-temporal MLP network for seizure prediction using EEG signals, Measurement, Vol. 206, pp. 112278, 2023.

  15. Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism, Computers in Biology and Medicine, Vol. 143, pp. 105303, 2022. (ESI高被引论文)

  16. Toward Open-World Electroencephalogram Decoding Via Deep Learning: A Comprehensive Survey, IEEE Signal Processing Magazine, Vol. 39, No. 2, pp. 117-134, 2022. (特邀综述, 信号处理领域国际顶级期刊)

  17. EEG-based seizure prediction via Transformer guided CNN, Measurement, Vol. 203, pp. 111948, 2022.

  18. EEG-Based Emotion Recognition via Efficient Convolutional Neural Network and Contrastive Learning, IEEE Sensors Journal, Vol. 22, No. 20, pp. 19608-19619, 2022.

  19. Patient-Specific Seizure Prediction via Adder Network and Supervised Contrastive Learning, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 30, pp. 1536-1547, 2022.

  20. Multi-channel EEG-based emotion recognition in the presence of noisy labels, Science China-Information Sciences, Vol. 65, No. 4, pp. 140405, 2022.

  21. Spatial-Spectral Nonlinear Hyperspectral Unmixing Under Complex Noise, IEEE Sensors Journal, Vol. 22, No. 5, pp. 4338-4346, 2022.

  22. Emotion Recognition from Multi-Channel EEG via Deep Forest, IEEE Journal of Biomedical and Health Informatics, Vol. 25, No. 2, pp. 453-464, 2021. (ESI高被引论文)

  23. AttentionFGAN: Infrared and Visible Image Fusion using Attention-based Generative Adversarial Networks, IEEE Transactions on Multimedia, Vol. 23, pp. 1383-1396, 2021. (ESI高被引论文)

  24. Plane-Wave Image Reconstruction via Generative Adversarial Network and Attention Mechanism, IEEE Transactions on Instrumentation and Measurement, Vol. 70, pp. 4505115, 2021.

  25. Multi-focus Image Fusion: A Survey of the State of the Art, Information Fusion, Vol. 64, pp. 71-91, 2020. (ESI高被引论文)

  26. Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network, Computers in Biology and Medicine, Vol. 123, pp. 103927, 2020.

  27. Sparse unmixing of hyperspectral data with bandwise model, Information Sciences, Vol. 512, pp. 1424-1441, 2020.

  28. Infrared and visible image fusion methods and applications: A survey, Information Fusion, Vol. 45, pp. 153-178, 2019. (特邀综述, ESI高被引论文)

  29. FusionGAN: A generative adversarial network for infrared and visible image fusion, Information Fusion, Vol. 48, pp. 11-26, 2019. (ESI高被引论文)

  30. Infrared and visible image fusion via gradient transfer and total variation minimization, Information Fusion, Vol. 31, pp. 100-109, 2016. (ESI高被引论文)

专著教材

申请专利

授权专利多项

获奖成果

  1. 全球前2%顶尖科学家

  2. 指导研究生获硕士研究生国家奖学金:张中振、赵禹阊、邓志伟、毛婷婷

  3. 指导研究生获合肥工业大学优秀毕业生:张中振(省优)、邓志伟(省优)、毛婷婷(省优)、林学娟、赵禹阊

  4. 指导研究生获合肥工业大学三好学生:邓志伟(优秀三好)、邵成浩、赵红宇

  5. 指导本科生参加竞赛获国家级奖和省级奖10余项。




b0b体育app下载 - 游戏有限公司